The transition of Acute Post-operative pain to Persistent Postoperative Pain: Is it a burden?

M.A.E. Mareus, MD., PhD.,

Department of Anesthesiology, ICU and Perioperative Medicine

Hamad Medical Corporation

Qatai

and

University of Maastricht

Mental Health and Neuroscience

The Netherlands

Long term implications: Hyperalgesia

Taddio et al. The Lancet 1997; 349, 599 - 603.

Invasive procedures in Preterm children: Brain and cognitive development at school age

chronic post surgical pain

- ☐ The pain must develop after a surgical procedure
- ☐ The pain is of at least two months duration
- ☐ Other causes for the pain have been excluded
- ☐ The possibility that the pain is from a pre-existing condition has been excluded

Macrea & Davies, 1999

prevalence persistent post surgical pain

	Kehlet 2006	Macrea 2008	Niraj & Rowbotham 2011	Lavand'homme 2011
Amputation	30-50	50-85	27-30	50-85
Thoracotomy	30-40	5-65	52	16-21
Cardiac surgery	30-50	30-55	44	-
Breast surgery	20-30	20-50	48	47
Hip surgery		12	28	12
Hernia repair	10	5-35	12	12
Ceasarean section	10	6		4-10

Nature Reviews | Neuroscience

From a neuron centric view to a neuron-glial view

Microglia

Astroglia

Berger JV, Knaepen L, Janssen SP, Jaken RJ, Marcus MA, Joosten EA, Deumens R. 2011 Cellular and molecular insights into neuropathy-induced hypersensitivity for mechanism-based treatment approaches

Brain Res Rev. 67(1-2):282-310

Watkins et al: Trends in Neuroscience 2001, 24: 450-55

Transition from acute to chronic Pain

From: Monk PN and Shaw P (2006) Nat.Med. 123, 885-887

The first stage: Activation of Microglia

- 1. Chemokines: CCL2/CCR2
- 2. ATP and Purinergic receptors
- 3. Toll like receptors

Activated microglia and pain?

The neuropathic pain triad: neurons, immune cells and glia Joachim Scholz & Clifford J Woolf Nature Neuroscience 10, 1361 - 1368 (2007)

Transition from acute to chronic Pain

From: Monk PN and Shaw P (2006) Nat.Med. 123, 885-887

Activated astrocytes and Pain

Astrocytes maintain the central sensitization proces among other things

Autocrine loop: bFGF CS induction: II-1B

Regional anaesthesia to prevent chronic pain after surgery

Andreae M H , and Andreae D A Br. J. Anaesth. 2013;111:711-720

Forest plot favoured epidural anaesthesia for the prevention of PPP

outcomes at 6 months after thoracotomy with an OR of 0.33 (95% CI 0.20–0.56) and paravertebral block for breast cancer surgery with an OR of 0.37 (95% CI 0.14–0.94), respectively

	Favours reg	gional	Conventional pain	control		OR	OR
Study or subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Thoracotomy (e	pidural analge	esia)					
Ju 2008	26	48	31	43	43.4%	0.46 [0.19, 1.10]	-
Lu 2008	9	62	12	28	31.4%	0.23 [0.08, 0.63]	
Senturk 2002	25	46	18	23	25.2%	0.33 [0.10, 1.04]	-
Subtotal (95% CI)		156		94	100.0%	0.34 [0.19, 0.60]	•
Total events	60		61				
Heterogeneity: τ ² =0.0	00; χ^2 =1.04, df	=2 (<i>P</i> =0.	59); <i>I</i> ² =0%				
Test for overall effect:	Z=3.69 (P=0.	0002)					
1.1.2 Breast cancer s	urgery (parav	ertebral t	block)				
Ibarra 2011	5	15	7	14	39.3%	0.50 [0.11, 2.24]	
Kairaluoma 2006	5	30	12	30	60.7%	0.30 [0.09, 1.00]	
Subtotal (95% CI)		45		44	100.0%	0.37 [0.14, 0.94]	
Total events	10		19				
Heterogeneity: τ ² =0.0	0; χ^2 =0.27, df	=1 (<i>P</i> =0.	60); <i>I</i> ² =0%				
Test for overall effect:	Z=2.09 (P=0.	04)					
							0.1 0.2 0.5 1 2 5 10
Andreae M H , and Andreae D A Br. J. Anaesth. 2013;111:711-720			Favours experimental Favours control				

British Journal of Anaesthesia

[©] The Author [2013]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

As such therapeutic or pharmacological manipulation of the glial cells in the central nervous system, and in particular in neuropathic pain, has, despite the major pre-clinical improvements, **not yet resulted into clinical applicable therapies** (Basbaum et al.,(2009) Cell 139, 267-284)

Pharmacotherapy for the prevention of chronic pain after surgery in adults

1.Luis Enrique Chaparro¹, et al. Published Online: 24 JUL 2013

We identified 40 RCT for various pharmacological interventions including intravenous ketamine (14RCTs), oral gabapentin (10RCTs), oral pregabalin (5RCTs), non-steroidal anti-inflammatories (3RCTs), intravenous steroids (3RCTs), oral N-methyl-D-aspartate (NMDA) blockers (3RCTs), oral mexiletine(2RCTs), intravenous fentanyl (1RCT), intravenous lidocaine (1RCT),oral venlafaxine (1RCT) and inhalednitrousoxide(1RCT). Meta-analysis suggested a modest but statistically significant reduction in the incidence of chronic pain after surgery following treatment with ketamine but not gabapentin or pregabalin. Results with ketamine should be viewed with caution since most of the included trials were small (that is<100 participants per treatment arm), which could lead to the overestimation of treatment effect

A-fiber afferent

descending (supraspinal) axon

Nociception-specific projection neuron

Wide-dynamic-range projection neuron

Nociceptor/ C-fiber afferent

PKC-γ interneuron

Inhibitory interneuron

Excitatory interneuron

glial cell

Early growth response 1 (EGR1) by a 23-BP DNA decoy (AYX1)

From a neuron centric view to a neuron-glial view

Astroglia

Berger JV, Knaepen L, Janssen SP, Jaken RJ, Marcus MA, Joosten EA, Deumens R. 2011 Cellular and molecular insights into neuropathy-induced hypersensitivity for mechanism-based treatment approaches

Brain Res Rev. 67(1-2):282-310

AYX1 efficacy in the CFA model

From: Mamet et al. (2014) Pain 155, 322-333

Initial demonstration AYX1 in the plantair incisional model

Is this a clinical applicable therapy?

RS Ulrich, 1984 View through a window may influence recovery from surgery. Science 224:4220-421

Patients with window view on nature

(Enriched Environment)

facing a brick building
wall
(Restricted Housing)

shorter hospital stay
use of less analgesic
less complain to the staff

Yes, enriched (healing) housing is a clinical applicable therapy and affects the neuron-glia interaction

Is this a clinical applicable therapy?

RQ: Is it possible to modulate such a complex glialneuron interaction as noted during the transition from acute to chronic pain without using pharmacological interventions?

Answer: Yes, it seems that housing does change the complex glial-neuron interaction and interferes with the transition from acute to chronic pain.

Modulation of the glia-neuron interaction: non-pharmacological?

T=o:

injection of 2mg of carrageenan in the right knee of the rat

Restricted Environment

Enriched Environment

Reduction in the duration of pain

Modulation of the glia-neuron interaction: non-pharmacological?

T=o: injection of 2mg of carrageenan in the right knee of the rat

Enriched environment

GFAP Intensity at DPO21

predictors of persistent post surgical pain

study 1:

1490 hospitalized patients, various surgical procedures 6 months follow-up

□ study 2:

1000 day surgery patients, various surgical procedures 12 months follow-up

☐ Study 3:

500 patients with hysterectomy 3 & 6 months follow-up

Somatic and Psychologic Predictors of Long-term Unfavorable Outcome After Surgical Intervention

Madelon L. Peters, PhD,* Micha Sommer, MD,† Janneke M. de Rijke, PhD,†
Fons Kessels, MD, MSc,‡ Erik Heineman, MD, PhD,§ Jacob Patijn, MD, PhD,†
Marco A. E. Marcus, MD, PhD,† Maarten van Kleef, MD, PhD,† and Johan W. S. Vlaeyen, PhD*

Outcome:

increased pain at follow-up

Predictors:

□ demographics: sex, age, education□ pre-operative pain, ASA grade

□ duration of surgery

☐ type of operation: minor, intermediate, major

anatomical site

☐ type of anesthesia (general, locoregional, both)

psychological

surgical fear

pain catastrophizing

optimism

☐ self-efficacy

main predictors: odds ratio's

	Study 1
More extensive	2.6
operation	2.0
Duration of surgery	2.0
Pre-operative pain	
Acute Pain Intensity	3.2
Surgical Fear	1.9
Catastrophizing	(+)
Optimism	(+)

Preoperative Anxiety and Catastrophizing

A Systematic Review and Meta-analysis of the Association With Chronic Postsurgical Pain

Maurice Theunissen, MSc,* Madelon L. Peters, PhD,† Julie Bruce, PhD,‡ Hans-Fritz Gramke, MD, PhD,* and Marco A, Marcus, MD, PhD*

29 studies included: 16 positive association
13 no association
0 negative association

pooled OR: 2.1

(95% CI: 1.5 - 3.0)

N = 14

consistent predictors

□ type of procedure
 □ younger age
 □ pre-operative pain
 □ high levels of acute pain
 □ psychological factors (anxiety, negative cognitions & expectations)
 □ (genetic factors)
 □ (pain sensitivity / pain modulation capacity (QST, CPM))

Eur J Pain 16 (2012) 901-910

Development of a risk index for the prediction of chronic post-surgical pain

A. Althaus¹, A. Hinrichs-Rocker¹, R. Chapman², O. Arránz Becker³, R. Lefering¹, C. Simanski⁴, F. Weber⁵, K.-H. Moser⁶, R. Joppich⁷, S. Trojan⁷, N. Gutzeit¹, E. Neugebauer¹

other chronic pre-operative pain

post-surgical acute pain

capacity overload

comorbid stress symptoms

Chronic post-surgical pain

Number of risk factors presented (0-5)

Are Psychological Predictors of Chronic Postsurgical Pain Dependent on the Surgical Model? A Comparison of Total Knee Arthroplasty and Breast Surgery for Cancer

Anne Masselin-Dubois,*^{,†} Nadine Attal,*^{,†,‡} Dominique Fletcher,*^{,†,‡,§} Christian Jayr,[¶] Aline Albi,[¶] Jacques Fermanian,^{||} Didier Bouhassira,*^{,†,‡} and Sophie Baudic*^{,†,‡}

- ☐ TKA n=89; breast: n=100
- \square PPSP: average pain at 3 months \ge 3 (0-10 scale)
- \square Neuropathic pain: DN4 at 3 months \ge 3 (0-7 scale)

Predictors PPSP:

- older age
- □ acute post-operative pain (day 2)
- □ state anxiety & catastrophizing

acute pain

Acute Pain Service

Ready et al. 1988 Maier et al 1994

< 20 %

of all patients should experience severe pain after 1997

Audit Commission (UK), London 1997

Post-operatieve pijn: een up-date

Working together

A defenition what is quality. An agreement how to work together and all should have the same passion to reach that goal.

